
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2221
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fast and Area Efficient RSA Cryptosystem
Design Using Modified Montgomery Multiplication

for FPGA Applications
Desiree Juby Vincent

Abstract— RSA(Rivest-Shamir-Adleman) cryptosystem is one of the most widely used public key cryptosystem.The importance of high
security and faster implementations paved the way for RSA crypto-accelerators, hardware implementations of the RSA algorithm.The
whole RSA includes three parts: key generation, encryption and decryption process. The RSA operation is a modular exponentiation, and
its security lies in its inability to efficiently factorize large integers. Basically, the modular exponentiation with a large modulus is usually
accomplished by performing repeated modular multiplications, which is considerably time-consuming. As a result, the throughput rate of
RSA cryptosystem will entirely dependent on the speed of modular multiplication and the number of performed modular multiplications. To
speed up the process of modular multiplication, Montgomery’s algorithm is recognized as a very efficient solution, in which it replaces the
trial division with a series of additions and division by a power of two. Therefore, it is well suited to hardware implementation and consumes
less power and uses smaller amount of space in the FPGA compared to other multiply and reduce methods. This work describes the
design of an efficient RSA cryptosystem that uses a modified Montgomery algorithm to increase the speed of modular multiplication and a
very fast parallel prefix adder (Kogge- Stone Adder) is employed to reduce the critical path .The design architecture is coded in VHDL,
synthesized using Xilinx ISE 12.1 and simulated using Modelsim. Experimental results shows that the modified design obtain the best
delay performance compared with the standard design.

Index Terms— FPGA(Field Programmable Gate Array) Kogge- Stone Adder Modular exponentiation Modular multiplication Montgomery
algorithm RSA(Rivest-Shamir-Adleman) VHDL(VHSIC hardware description language)

—————————— ——————————

1 INTRODUCTION
T is widely recognized that security issues play a crucial
role in the majority of today’s and the future’s computer
and communication systems. The explosive growth of data

communications has made cryptographic algorithms and their
implementations a crucial research topic to provide the need
of confidentiality, authentication, data integrity, and/or non-
repudiation. In order to run successfully, electronic businesses
require secure payment channels and digital valid signatures.
Cryptography provides a solution to all these problems.
Rivest–Shamir–Adleman (RSA) ,is the most widely used pub-
lic-key cryptosystem, based on the idea originally presented
by Diffie and Hellman in 1976. The importance of high
security and faster implementations paved the way for RSA
crypto-accelerators, hardware implementations of the RSA
algorithm.

The RSA operation is a modular exponentiation, and its se-
curity lies in its inability to efficiently factorize large inte-
gers.Traditional application-specified integrated circuit (ASIC)
solutions, however, have the well-known drawback of re-
duced flexibility and high nonrecurring cost compared with
software solutions .The solution, which combines high flexibil-
ity with speed and physical security of traditional hardware, is
the implementation of cryptographic algorithms on reconfigu-
rable devices as field programmable gate arrays (FPGAs).

 ————————————————
• Desiree Juby Vincent is currently pursuing masters

degree program in VLSI and Embedded Systems in T.K.M
Institute of Technology under CUSAT,Kerala,India.
 E-mail: jubyvin@gmail.com

Although computation power has increased with Moore’s

law, the large increase in computation costs associated with
public key cryptosystems has put a significant strain on availa-
ble computing resources. Thus, there is a growing need for
hardware acceleration of public key cryptosystems to reduce
the burden of using them. Crypto-accelerators are very promis-
ing as they typically achieve better performance and better
power efficiency than a software implementation on a generic
processor .This project intends to design arithmetic architec-
tures for RSA Cryptosystems which are optimized for modern
FPGAs and ASIC technologies. This architecture uses Mont-
gomery algorithm to increase the speed of modular multiplica-
tion and the kogge-stone addition (KSA) is employed to reduce
the critical path. This Multiplication makes the processing time
faster and use comparatively smaller amount of space in the
FPGA.

2 SYSTEM ARCHITECTURE
The whole RSA implementation includes three parts: key

generation, encryption and decryption process. The key gen-
eration stage aims to generate a pair of public key and private
key. The cipher text can be decrypted at receiver side by RSA
secret key.
A public key encryption scheme has six ingredients:
1.Plaintext: This is the readable message or data that is fed into
the algorithm as input.
2.Encryption algorithm: The encryption algorithm performs
various transformations on the plaintext.
3.Public and private key: This is a pair of keys that have been

I IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2222
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

selected so that if one is used for encryption, the other is used
for decryption.
4.Ciphertext: This is the scrambled message produced as out-
put
5.Decryption algorithm: This algorithm accepts the cipher text
and the matching key and produces the original plaintext.

Generally, it includes a third party to generate a pair
of public key and to distribute keys to transmitter and receiv-
er. Transmitter and receiver should both know the value of n.
The transmitter has the knowledge of public key e, and only
the receiver knows the private key d. Thus, a public key of (e,
n) and secret key (d, n) generated by third party is distributed
to transmitter and receiver separately.

2.1 RSA Hardware Implementation
The RSA algorithm is one of the simplest and most widely

used public-key cryptosystems.Fig.1 summarizes the RSA al-
gorithm.

Fig.1 The RSA algorithm

Fig.2 The system architecture for key generation

 The system architecture for key generation is shown in
Fig.2. A random number generator generates 16-bit pseudo
random numbers and the primality tester takes a random
number as input and tests if it is a prime .Confirmed primes
component pulls out two primes, and calculates n and Φ(n) . N
is stored in a register .Φ(n) is sent to the Greatest Common
Divider (GCD),where public exponent e is selected such that
gcd [Φ(n) ,e] = 1, and private exponent d is obtained by invert-
ing e modulo Φ(n). E and d are also stored in registers. Once
n,d, and e are generated, RSA encryption/decryption is simp-
ly a modular exponentiation operation. Fig.3 shows the RSA
encryption/decryption structure in hardware implementation.

 Fig.3 The RSA encryption/decryption structure

The core of the RSA implementation is how efficient the

modular arithmetic operations are, which include modular
addition, modular subtraction, modular multiplication and
modular exponentiation.

1) Modular Multiplication : Modular multiplication can be

performed using shift-add multiplication algorithm. Let A and
B are two k-bit positive integers, respectively. Let Ai and Bi
are the ith bit of A and B, respectively. The algorithm is stated
as follows:

Input: A, B, n
Output: M = A*B mod n
P <= A;
M <= 0;
for i = 0 to k-1
if Bi = 1
M <= (M + P) mod n;
end if
P <= 2*P mod n;
end for
return M;
 2)Modular Exponentiation: The modular exponen-

tiation operation is simply an exponentiation operation where
modular multiplication is intensively performed. Modular
exponentiation components can be implemented using LR
binary method, where LR stands for the left-to-right scanning
direction of the exponent.

The following pseudo code describes the LR binary algo-

rithm. Input: A, B, n
Output: E = AB mod n
E <= 1;

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2223
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

for i = k-1 to 0
if Bi = 1
E <= A*E mod n;
end if
if i ≠ 0
E <= E*E mod n;
end if
end for
return E;

2.2 THE MONTGOMERY ALGORITHM
 One of the widely used algorithms for efficient mod-
ular multiplication is the Montgomery’s algorithm [4]. This
algorithm computes the product of two integers modulo a
third one without performing division by M. It yields the re-
duced product using a series of additions.

Let A, B and M be the multiplicand and multiplier
and the modulus respectively and let n be the number of digit
in their binary representation, i.e. the radix is 2.

The pre-conditions of the Montgomery algorithm are
as follows:

The modulus M needs to be relatively prime to the
radix, i.e. there exists no common divisor for M and the radix;
The multiplicand and the multiplier need to be smaller than
M.

The Montgomery algorithm uses the least significant
digit of the accumulating modular partial product to deter-
mine the multiple of M to substract. If R is the current modu-
lar partial product, then q is chosen so that R+q×M is a multi-
ple of the radix r, and this is right-shifted by r positions, i.e.
divided by r for use in the next iteration. So, after n iterations,
the result obtained is R=A×B×r- n mod M. A modified version
of Montgomery algorithm is given below.
Algorithm Montgomery (A, B, M)
Int R = 0;
1: for i= 0 to n-1
2: R = R + ai×B;
3: if r0 = 0 then
4: R = R div 2
5: else
6: R = (R + M) div 2;
return R;
end Montgomery.
Fig 4: Montgomery modular algorithm.

In order to yield the right result, we need an extra
Montgomery modular multiplication by the constant r2n mod
M. As binary representation of numbers is used, the final re-
sult is computed using the following algorithm as given in fig
5.

Algorithm Modular Mult(A, B, M, n)
Const C := 22n mod M;
Int R := 0;
R := Montgomery(A, B, M);
Return Montgomery(R, C, M);
End Modular Mult.

Fig 5: Modular multiplication algorithm

1) Iterative Montgomery Architecture: The interface of
the Montgomery modular multiplier is given in Fig 6.
It expects the operands A, B and M and it computes R
= (A×B×2-n) mod M.

 Fig 6: Montgomery multiplier interface

The detailed architecture of the Montgomery modular

multiplier is given in Fig 7. It uses two multiplexers, two ad-
ders, two shift registers, three registers and a controller .The
first multiplexer of the proposed architecture, i.e. MUX21
passes 0 or the content of register B depending on whether bit
a0 indicates 0 or 1 respectively. The second multiplexer, i.e.
MUX22 passes 0 or the content of register M depending on
whether bit r0 indicates 0 or 1 respectively. The first adder, i.e.
ADDER1, delivers the sum R + ai× B (line 2 of algorithm of
Fig. 4), and the second adder, i.e. ADDER2, yields the sum R +
M (line 6 of the same algorithm). The shift register SHIFT
REGISTER1 provides the bit ai. In each iteration i of the multi-
plier, this shift register is right-shifted once so that a0 contains
ai.

Fig 7: Montgomery multiplier architecture

The role of the controller consists of synchronizing the

shifting and loading operations of the SHIFTREGISTER1 and
SHIFT REGISTER2. It also controls the number of iterations
that have to be performed by the multiplier. For this end, the
controller uses a simple down counter. The counter is inherent
to the controller. The interface of the controller is given in Fig
8.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2224
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Fig 8: Interface of the Montgomery controller

In order to synchronize the work of the components of the

architecture, the controller consists of a state machine, which
has 6 states defined as follows:

• S0: Initialize of the state machine; Go to S1;
• S1: Load multiplicand and modulus into the correspond-

ing
registers; Load multiplier into shift register1;Go to S2;
• S2: Wait for ADDER1;Wait for ADDER2;Load multiplier

into shift register2;Increment counter; Go to S3;
• S3: Enable shift register2;Enable shift register1;
• S4: Check the counter; If 0 then go to S5 else go to S2;
• S5: Halt;

 2) Modular Multiplier Architecture: The modular mul-

tiplier yields the actual value of A×B mod M. It first com-
putes R = A×B×2−n mod M using the Montgomery modular
multiplier. Then, it computes R × C mod M, where C = 22n
mod M.

 Figure 9: The modular multiplier architecture

 The modular multiplier uses a 4-to-1 multiplexer MUX4

and a register REGISTER.
• Step 0: Multiplexer MUX4 passes 0 or B. MUX2 passes A.

It yields R1 = A×B×2−n mod M. The register denoted by REG-
ISTER contains 0.

• Step 1: Multiplexer MUX4 passes 0 or R. MUX2 passes C.
It yields R = R1×C mod M. The register denoted by REGISTER
contains the result of the first step computation, i.e. R =
A×B×2−n mod M.

The modular multiplier controller does all the control that
the Montgomery modular multiplier needs as described in the
previous section. Furthermore, it controls the changing from
step 0 to step 1, the loading of the register denoted by REGIS-
TER.

2.3 The Modified Montgomery Algorithm
 A modified version of Montgomery multiplication can be

obtained using the following algorithm.

P:=0;
For i in 0 to k-1 loop
q(i):=(p(0)+x(i)*y(0))mod 2;
p:=(p+x(i)*y+q(i)*m)/2;
end loop;
if p>=m then z:=p-m; else z:=p; end if;
 In the above algorithm the critical path includes q(i) and

p computation. An alternative algorithm which precomputes
q(i+1);ie, q for the next iteration is given below.Its advantage
in hardware implementation is that p and q(i) can be comput-
ed in parallel.

P:=0; q(0):=x(0)*y(0);
For i in 0 to k-1 loop
q(i+1):=((p(1:0)+x(i)*y(1:0) + q(i)*m(1:0))/2
+ x(i+1)*y(0))mod 2;
p:=(p+x(i)*y+q(i)*m)/2;
end loop;
if p>=m then z:=p-m; else z:=p; end if;

 The carry propagation delay in the above algorithm can

be reduced using kogge-stone adder. KSA is a parallel prefix
form carry look ahead adder. It generates carry in O (logn)
time. In KSA, carries are computed fast by computing them in
parallel.

The complete functioning of KSA can be easily compre-

hended by analyzing it in terms of three distinct parts :
1. Pre processing
This step involves computation of generate and propagate

signals corresponding to each pair of bits in A and B. These
signals are given by the logic equations below:

pi = Ai xor Bi
gi = Ai and Bi
2. Carry look ahead network
This block differentiates KSA from other adders and is the

main force behind its high performance. This step involves
computation of carries corresponding to each bit. It uses group
 propagate and generate as intermediate signals which are
given by the logic equations below:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2225
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Pi = Pi and Piprev
Gi = Gi or (Pi and Giprev)
3. Post processing
This is the final step and is common to all adders of this

family (carry look ahead). It involves computation of sum bits.
Sum bits are computed by the logic given below:

Si = Pi xor Ci-1

Fig10.illustration of kogge-stone adder

3 RESULTS AND DISCUSSIONS
 The modules are modeled using VHDL in Xilinx ISE De-

sign Suite 12.1 and the simulation of the design is performed
using Modelsim SE 6.2c to verify the functionality of the de-
sign.

A. RSA key generation

 Fig11.1 Simulation result of RSA key generation

 RSA key generation obtains the value of public key e and

private key d. The value of prime numbers are obtained from
LFSR. Then values of n and Φ(n) is calculated. Value of e is
calculated such that gcd (e,Φ(n)) is 1.The value of p and q is

obtained as 133 and 23 respectively.
N=p*q=133*23=3059,Φ=132*22=2904.The value of e is selected
as 5.The value of d is obtained as 581.

B. Encryption
A 32 bit data is given as message input.Then e and n values

are given as inputs. Inputs given are indata=73,inexp=5 and
inmod=3059.Output cypher =2588.

Fig 11.2 Simulation result of encryption
C. RSA block

Fig 11.3 Simulation result of RSA block

 It takes a message value as input and calculates the

value of cipher text. Then message value is decrypted.using
the RSA decryption equation, M=Cd(mod n).

D. Montgomery multiplier

Fig 11.4: The modular multiplier behavior during the first

multiplication: Montgomery(15, 26, 47) = 34

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2226
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Fig 11.5: The modular multiplier behavior during the se-

cond multiplication: Montgomery(7,34,47) = 14

 The Montgomery modular multiplier prototype for op-

erands A = 15,B = 26, M = 47 and so the constant C = 22x6 mod
47,which is C = 7,is simulated.

TABLE I
MINIMUM PERIOD AND MAXIMUM FREQUENCY

DEPENDING ON THE BIT LENGTH.

Method Operand
size

Min.Period Max.Freq

Add and
Shift

32 11.598ns 86.221MHz
128 17.292ns 57.829MHz
512 42.026ns 23.795MHz

Modified
Montgomery

32 1.878ns 532.48MHz
128 2.150ns 465.12MHz
512 3.298ns 303.21MHz

TABLE II

FPGA CONFIGURABLE LOGIC BLOCK SLICES’ USAGE
(OUT OF 4656) DEPENDING ON THE BIT LENGTH.

Method Operand

size
No.of Slices
used

Percentage
utilization

Add and
Shift

32 218 4%
128 782 16%
512 3324 71%

Modified
Montgomery

32 185 3%
128 654 11%
512 2434 52%

 Implementation results of add and shift architecture and

Montgomery architecture,which were implemented on a Xil-
inx FPGA XC3S500E-4FG320,are shown in the following ta-
bles. Table 1 compares the timing operation, showing the max-
imum workable frequencies and minimum workable periods;
Table 2 compares the device utilization by the number of used
FPGA configurable logic block slices and its representative
percentage.These results shows that operating frequency of
modified Montgomery multiplication in fast compared to add
and shift method.Critical path is reduced using KSA.For

Montgomery method device utilization is also less.

4 CONCLUSION
This project introduces the design of an efficient RSA cryp-

tosystem that uses Montgomery algorithm for modular multi-
plication.This architecture speed up modular multiplication and
also eliminates the need for memories by checking for primality
and selects two prime numbers simultaneously while the ran-
dom numbers were being generated.RSA key generation, en-
cryption and decryption using shift and add modular multipli-
cation method and Montgomery multiplication has been de-
signed using VHDL and simulated using modelsim. Montgom-
ery replaces the division by adding a shift and modulate, which
is much faster than multiply and reduce method .The use of
modified Montgomery and kogge-stone adder reduces the criti-
cal path and response time.A comparative study in terms of
area and speed of Montgomery multiplication and add and
shift multiplication is also done.

REFERENCES
[1] Sushanta Kumar Sahu & Manoranjan Pradhan, “Implementation of Modular

multiplication for RSA Algorithm” ,IEEE conference on communication sys-
tems and network technologies 112–114,2011

[2] Jainath Nasreen.p, Denila.N, “A Novel Architecture for VLSI Implementa-
tion of RSA Cryptosystem”, IEEE International conference on ICCEET 606–
609,2012

[3] Gustavo D. Sutter, Member, IEEE, Jean-Pierre Deschamps, and José Luis
Imaña “Modular Multiplication and Exponentiation Architectures for Fast
RSA Cryptosystem.Based on Digit Serial Computation.”IEEE Transactionson
industrial electronics, vol. 58, NO. 7, JULY 2011

[4] P. L.Montgomery, “Modular multiplication without trial division,
”Math.Comput., vol. 44,no.170,pp.519–521, Apr. 1985.

[5] Douglas L. Perry, “VHDL Programming by Example, ”Fourth Edition,
pp.277,TataMcGra-Hill Publishers Ltd

[6] William Stallings, "Cryptography and Network Security: Principles and Prac-
tices." 3rd edition.

[7] Aaron E. Cohen and Keshab K. Parhi,“Architecture Optimizations for the
RSA Public Key Cryptosystem: A Tutorial,” IEEE circuits and systems maga-
zine, fourth quarter 2011

[8] David NarhAmanor,”Efficient Hardware Architectures for Modular Multi-
plication”The University of Applied Sciences Offenburg, Germany,2005

[9] N. Nedjah and L. Mourelle.”A review of modular multiplication methods
and respective hardware implementations”.Informatica, 30 :111–130, 2006

[10] C. Mclvor, M. McLoone, and J. V. McCanny, “Fast Montgomery modular
multiplication and RSA cryptographic processor architectures,” inConf. Rec.
37th Asilomar Conf. Signals, Syst., Comput., 2003, vol. 1,pp. 379–384,1975.

[11] A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic design of RSA
processors based on high-radix montgomery multipliers,” IEEET-
rans.VLSI,pp.1–11,2011L. Hubert and P. Arabie, “Comparing Parti-
tions,” J. Classification, vol. 2, no. 4, pp. 193-218, Apr. 1985. (Journal or
magazine citation)

[12] R.J. Vidmar, “On the Use of Atmospheric Plasmas as Electromagnetic Re-
flectors,” IEEE Trans. Plasma Science, vol. 21, no. 3, pp. 876-880, available at
http://www.halcyon.com/pub/journals/21ps03-vidmar, Aug. 1992.
(URL for Transaction, journal, or magzine)

[13] J.M.P. Martinez, R.B. Llavori, M.J.A. Cabo, and T.B. Pedersen, "Inte-
grating Data Warehouses with Web Data: A Survey," IEEE Trans.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 2227
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Knowledge and Data Eng., preprint, 21 Dec. 2007,
doi:10.1109/TKDE.2007.190746.(PrePrint)

IJSER

http://www.ijser.org/

	1 Introduction
	2 system architecture
	2.1 RSA Hardware Implementation

	2.2 The Montgomery Algorithm
	2.3 The Modified Montgomery Algorithm

	3 RESULTS AND DISCUSSIONS
	4 Conclusion
	References

